This article is about the topic of technology in human history. For the book series, see History of Technology (book series). For the academic discipline that studies the history of technology, see History of science and technology.
History of technology |
---|
By technological eras |
|
By historical regions |
|
By type of technology |
|
Technology timelines |
|
Outlines |
|
Technological artifacts are products of an economy, a force for economic growth, and a large part of everyday life. Technological innovations affect, and are affected by, a society's cultural traditions. They also are a means to develop and project military power.
Contents
Measuring technological progress
This section does not cite any references or sources. (April 2014) |
Instead of specific inventions, White decided that the measure by which to judge the evolution of culture was energy. For White "the primary function of culture" is to "harness and control energy." White differentiates between five stages of human development: In the first, people use energy of their own muscles. In the second, they use energy of domesticated animals. In the third, they use the energy of plants (agricultural revolution). In the fourth, they learn to use the energy of natural resources: coal, oil, gas. In the fifth, they harness nuclear energy. White introduced a formula P=E*T, where E is a measure of energy consumed, and T is the measure of efficiency of technical factors utilizing the energy. In his own words, "culture evolves as the amount of energy harnessed per capita per year is increased, or as the efficiency of the instrumental means of putting the energy to work is increased". Russian astronomer, Nikolai Kardashev, extrapolated his theory creating the Kardashev scale, which categorizes the energy use of advanced civilizations.
Lenski takes a more modern approach and focuses on information. The more information and knowledge (especially allowing the shaping of natural environment) a given society has, the more advanced it is. He identifies four stages of human development, based on advances in the history of communication. In the first stage, information is passed by genes. In the second, when humans gain sentience, they can learn and pass information through by experience. In the third, the humans start using signs and develop logic. In the fourth, they can create symbols, develop language and writing. Advancements in the technology of communication translates into advancements in the economic system and political system, distribution of wealth, social inequality and other spheres of social life. He also differentiates societies based on their level of technology, communication and economy:
- hunters and gatherers,
- simple agricultural,
- advanced agricultural,
- industrial,
- special (such as fishing societies).
By period and geography
This section needs additional citations for verification. (May 2008) |
Agriculture preceded writing in the history of technology.
- Olduvai stone technology (Olduwan) 2.5 million years ago (scrapers; to butcher dead animals)
- Acheulean stone technology 1.6 million years ago (hand axe)
- Fire creation and manipulation, used since the Paleolithic, possibly by Homo erectus as early as 1.5 Million years ago
- (Homo sapiens sapiens - modern human anatomy arises, around 200,000 years ago.)
- Clothing possibly 170,000 years ago.
- Stone tools, used by Homo floresiensis, possibly 100,000 years ago.
- Ceramics c. 25,000 BC
- Domestication of animals, c. 15,000 BC
- Bow, sling c. 9th millennium BC
- Microliths c. 9th millennium BC
- Copper c. 8000 BC
- Agriculture and Plough c. 8000 BC
- Wheel c. 4000 BC
- Gnomon c. 4000 BC
- Writing systems c. 3500 BC
- Bronze c. 3300 BC
- Salt c. 2500 BC
- Chariot c. 2000 BC
- Iron c. 1500 BC
- Sundial c. 800 BC
- Glass ca. 500 BC
- Catapult c. 400 BC
- Horseshoe c. 300 BC
- Stirrup first few centuries AD
Prehistory
Main article: Prehistoric technology
Stone Age
A variety of stone tools
Although Paleolithic cultures left no written records, the shift from nomadic life to settlement and agriculture can be inferred from a range of archaeological evidence. Such evidence includes ancient tools,[1] cave paintings, and other prehistoric art, such as the Venus of Willendorf. Human remains also provide direct evidence, both through the examination of bones, and the study of mummies. Though concrete evidence is limited, scientists and historians have been able to form significant inferences about the lifestyle and culture of various prehistoric peoples, and the role technology played in their lives.
Copper and Bronze Ages
A late Bronze Age sword or dagger blade
This technological trend apparently began in the Fertile Crescent, and spread outward over time. These developments were not, and still are not, universal. The three-age system does not accurately describe the technology history of groups outside of Eurasia, and does not apply at all in the case of some isolated populations, such as the Spinifex People, the Sentinelese, and various Amazonian tribes, which still make use of Stone Age technology, and have not developed agricultural or metal technology.
Iron Age
Ancient
Main article: Ancient technology
It was the growth of the ancient civilizations which produced the
greatest advances in technology and engineering, advances which
stimulated other societies to adopt new ways of living and governance.The Egyptians invented and used many simple machines, such as the ramp to aid construction processes. The Indus Valley Civilization, situated in a resource-rich area, is notable for its early application of city planning and sanitation technologies. Ancient India was also at the forefront of seafaring technology—a panel found at Mohenjodaro depicts a sailing craft. Indian construction and architecture, called 'Vaastu Shastra', suggests a thorough understanding of materials engineering, hydrology, and sanitation.
The peoples of Mesopotamia (Sumerians, Assyrians, and Babylonians) have been credited with the invention of the wheel, but this is no longer certain. They lived in cities from c. 4000 BC,[2] and developed a sophisticated architecture in mud-brick and stone,[3] including the use of the true arch. The walls of Babylon were so massive they were quoted as a Wonder of the World. They developed extensive water systems; canals for transport and irrigation in the alluvial south, and catchment systems stretching for tens of kilometres in the hilly north. Their palaces had sophisticated drainage systems.[4]
Writing was invented in Mesopotamia, using cuneiform script. Many records on clay tablets and stone inscriptions have survived. These civilisations were early adopters of bronze technologies which they used for tools, weapons and monumental statuary. By 1200 BC they could cast objects 5 m long in a single piece. The Assyrian King Sennacherib (704-681 BC) claims to have invented automatic sluices and to have been the first to use water screws, of up to 30 tons weight, which were cast using two-part clay moulds rather than by the 'lost wax' process.[5] The Jerwan Aqueduct (c. 688 BC) is made with stone arches and lined with waterproof concrete.[6]
The Babylonians were meticulous astronomers, keeping a series of records spanning 800 years. They were able to plot the motions of the planets and to predict eclipses.[7]
The Chinese were responsible for numerous technology discoveries and developments. Major technological contributions from China include early seismological detectors, matches, paper, cast iron, the iron plough, the multi-tube seed drill, the suspension bridge, the parachute[citation needed], natural gas as fuel, the magnetic compass, the raised-relief map, the propeller, the crossbow, the South Pointing Chariot, and gunpowder.
An illustration of the aeolipile, the earliest steam-powered device
Ancient Greek innovations were particularly pronounced in mechanical technology, including the ground-breaking invention of the watermill which constituted the first human-devised motive force not to rely on muscle labour (besides the sail). Apart from their pioneering use of waterpower, Greek inventors were also the first to experiment with wind power (see Heron's windwheel) and even created the earliest steam engine (the aeolipile), opening up entirely new possibilities in harnessing natural forces whose full potential would not be exploited until the Industrial Revolution. The newly devised right-angled gear and screw would become particularly important to the operation of mechanical devices.
The compartmented water-wheel, here its overshot version, was invented in Hellenistic times.
In music, the water organ, invented by Ctesibius and subsequently improved, constituted the earliest instance of a keyboard instrument. In time-keeping, the introduction of the inflow clepsydra and its mechanization by the dial and pointer, the application of a feedback system and the escapement mechanism far superseded the earlier outflow clepsydra.
The famous Antikythera mechanism, a kind of analogous computer working with a differential gear, and the astrolabe show great refinement in astronomical science.
Greek engineers were also the first to devise automata such as vending machines, suspended ink pots, automatic washstands and doors, primarily as toys, which however featured many new useful mechanisms such as the cam and gimbals.
In other fields, ancient Greek inventions include the catapult and the gastraphetes crossbow in warfare, hollow bronze-casting in metallurgy, the dioptra for surveying, in infrastructure the lighthouse, central heating, the tunnel excavated from both ends by scientific calculations, the ship trackway, the dry dock and plumbing. In horizontal vertical and transport great progress resulted from the invention of the crane, the winch, the wheelbarrow and the odometer.
Further newly created techniques and items were spiral staircases, the chain drive, sliding calipers and showers.
Pont du Gard in France, a Roman aqueduct
The engineering skills of the Inca and the Mayans were great, even by today's standards. An example is the use of pieces weighing upwards of one ton in their stonework placed together so that not even a blade can fit in-between the cracks. The villages used irrigation canals and drainage systems, making agriculture very efficient. While some claim that the Incas were the first inventors of hydroponics, their agricultural technology was still soil based, if advanced. Though the Maya civilization had no metallurgy or wheel technology, they developed complex writing and astrological systems, and created sculptural works in stone and flint. Like the Inca, the Maya also had command of fairly advanced agricultural and construction technology. Throughout this time period, much of this construction was made only by women, as men of the Maya civilization believed that females were responsible for the creation of new things. The main contribution of the Aztec rule was a system of communications between the conquered cities. In Mesoamerica, without draft animals for transport (nor, as a result, wheeled vehicles), the roads were designed for travel on foot, just like the Inca and Mayan civilizations.
Medieval to early modern
East Asia
Main articles: History of science and technology in China, History of science and technology in Korea and Science and technology in Japan
See also: Science and technology of the Song dynasty, List of Chinese inventions and List of Japanese inventions
Indian subcontinent
Islamic world
Main articles: List of inventions in the medieval Islamic world, Arab Agricultural Revolution and Science in the medieval Islamic world
See also: Science and technology in Iran, Science and technology in the Ottoman Empire and Islamic contributions to Medieval Europe
Medieval Europe
Medieval counterweight trebuchet (reconstruction)
Main article: Medieval technology
European technology in the Middle Ages may be best described as a symbiosis of traditio et innovatio.
While medieval technology has been long depicted as a step backwards in
the evolution of Western technology, sometimes willfully so by modern
authors intent on denouncing the church as antagonistic to scientific
progress (see e.g. Myth of the Flat Earth), a generation of medievalists around the American historian of science Lynn White
stressed from the 1940s onwards the innovative character of many
medieval techniques. Genuine medieval contributions include for example mechanical clocks, spectacles and vertical windmills. Medieval ingenuity was also displayed in the invention of seemingly inconspicuous items like the watermark or the functional button. In navigation, the foundation to the subsequent age of exploration was laid by the introduction of pintle-and-gudgeon rudders, lateen sails, the dry compass, the horseshoe and the astrolabe.Significant advances were also made in military technology with the development of plate armour, steel crossbows, counterweight trebuchets and cannon. The Middle Ages are perhaps best known for their architectural heritage: While the invention of the rib vault and pointed arch gave rise to the high rising Gothic style, the ubiquitous medieval fortifications gave the era the almost proverbial title of the 'age of castles'.
Paper making, a 2nd-century Chinese technology, was carried to the Middle East when a group of Chinese paper makers were captured in the 8th century. Paper making technology was spread to Mediterranean by the Muslim conquests. A paper mill was established in Sicily in the 12th century. In Europe the fiber to make pulp for making paper was obtained from linen and cotton rags. Lynn White credited the spinning wheel with increasing the supply of rags, which led to cheap paper, which was a factor in the development of printing.[9]
Renaissance technology
Main article: Renaissance technology
|
The invention of the moveable type printing press (c. 1441) lead to a tremendous increase in the number of books and the number of titles published.
Age of Exploration
Main article: Age of Exploration
The sailing ship (nau or carrack) enabled the Age of Exploration with the European colonization of the Americas, epitomized by Francis Bacon's New Atlantis. Pioneers like Vasco da Gama, Cabral, Magellan and Christopher Columbus
explored the world in search of new trade routes for their goods and
contacts with Africa, India and China which shortened the journey
compared with traditional routes overland. They also re-discovered the Americas
while doing so. They produced new maps and charts which enabled
following mariners to explore further with greater confidence.
Navigation was generally difficult, however, owing to the problem of
longitude and the absence of accurate chronometers. European powers rediscovered the idea of the civil code, lost since the time of the Ancient Greeks.Industrial Revolution
Main article: Industrial Revolution
|
19th century
The 19th century saw astonishing developments in transportation, construction, and communication technologies originating in Europe, especially in Britain. The steam engine which had existed since the early 18th century, was practically applied to both steamboat and railway transportation. The first purpose built railway line opened between Manchester and Liverpool in 1830, the Rocket locomotive of Robert Stephenson being one of the first working locomotives used on the line. Telegraphy also developed into a practical technology in the 19th century to help run the railways safely.Other technologies were explored for the first time, including the incandescent light bulb. The invention of the incandescent light bulb had a profound effect on the workplace because factories could now have second and third shift workers. Manufacture of ships' pulley blocks by all-metal machines at the Portsmouth block mills instigated the age of mass production. Machine tools used by engineers to manufacture parts began in the first decade of the century, notably by Richard Roberts and Joseph Whitworth. The development of interchangeable parts through what is now called the American system of manufacturing began in the firearms industry at the U.S Federal arsenals in the early 19th century, and became widely used by the end of the century.
Shoe production was mechanized and sewing machines introduced around the middle of the 19th century. Mass production of sewing machines and agricultural machinery such as reapers occurred in the mid to late 19th century. Bicycles were mass-produced beginning in the 1880s.
Steam-powered factories became widespread, although the conversion from water power to steam occurred in England before in the U.S.
Steamships were eventually completely iron-clad, and played a role in the opening of Japan and China to trade with the West. The Second Industrial Revolution at the end of the 19th century saw rapid development of chemical, electrical, petroleum, and steel technologies connected with highly structured technology research.
The period from the last third of the 19th century until WW1 is sometimes referred to as the Second Industrial Revolution.
20th century
20th century technology developed rapidly. Communication technology, transportation technology, broad teaching and implementation of the scientific method, and increased research spending all contributed to the advancement of modern science and technology. Due to the scientific gains directly tied to military research and development, technologies including electronic computing might not have developed as rapidly as they did in part due to war. Radio, radar, and early sound recording were key technologies which paved the way for the telephone, fax machine, and magnetic storage of data. Energy and engine technology improvements were also vast, including nuclear power, developed after the Manhattan project. Transport by rocketry was another significant 20th century development. Most of this work occurred in Germany (Oberth), Russia (Tsiolkovsky), and the United States (Goddard). Making use of computers and advanced research labs, modern scientists have recombinant DNA.The US National Academy of Engineering, by expert vote, established the following ranking of the most important technological developments of the 20th century [1]:
- Electrification
- Automobile
- Airplane
- Water supply and Distribution
- Electronics
- Radio and Television
- Mechanized agriculture
- Computers
- Telephone
- Air Conditioning and Refrigeration
- Highways
- Spacecraft
- Internet
- Imaging technology
- Household appliances
- Health technology
- Petroleum and Petrochemical technologies
- Laser and Fiber Optics
- Nuclear technology
- Materials science
21st century
The Mars Exploration Rovers have provided huge amounts of information by functioning well beyond NASA's original lifespan estimates.
Main article: 2000s in science and technology
In the early 21st century, the main technology being developed is electronics. Broadband Internet access
became commonplace in developed countries, as did wireless Internet on
smartphones that are capable of multimedia playback (video, audio, and
eBooks) and running other applications (e.g., navigation, productivity
tools, and games). The price of 3D printers is steadily decreasing and
finding uses in many areas.Research is ongoing into quantum computers, nanotechnology, bioengineering/biotechnology (cheap and accessible whole genome sequencing and personalized medicine, gene therapy, stem cell treatments, vaccine development, bionic body parts, cloning, regenerative proteins), nuclear fusion (see ITER, National Ignition Facility, DEMO, General Fusion and Lawrenceville Plasma Physics), Thorium- (e.g., LFTR) and Generation IV-nuclear reactors, advanced materials (e.g., graphene), the scramjet and drones (along with railguns and high-energy laser beams for military uses), superconductivity, the memristor, and green technologies such as alternative fuels (e.g., fuel cells, self-driving electric & plug-in hybrid cars), augmented reality devices and wearable electronic devices (see Project Glass and smartwatch), artificial intelligence (IBM Watson and the simulation of the human brain: Human Brain Project, Blue Brain Project), and more efficient & powerful LEDs, solar cells, integrated circuits, wireless power devices, engines, and batteries (e.g., molten salt battery, flywheel energy storage, and lithium-ion).
The understanding of particle physics is also expected to expand through particle accelerator projects, such as the Large Hadron Collider – the largest science project in the world[11] and neutrino detectors such as the ANTARES. Theoretical physics currently investigates quantum gravity proposals such as M-theory, superstring theory, and loop quantum gravity. The underlying phenomenon of M-theory, supersymmetry, is hoped to be experimentally confirmed with the International Linear Collider. Dark matter is also in the process of being detected via underground detectors (to prevent noise from cosmic rays). LIGO is trying to detect gravitational waves.
Spacecraft designs are also being developed, like the Orion. Whereas the James Webb Space Telescope will try to identify early galaxies as well as the exact location of the Solar System within our galaxy in 2018, the Advanced Technology Large-Aperture Space Telescope has orders-of-magnitude better resolution and sensitivity than its predecessors and will try to find biosignatures of terrestrial exoplanets (planned to be launched with Ares V in 2030).[citation needed] The finished International Space Station will provide an intermediate platform for space missions and zero gravity experiments. Despite challenges and criticism, NASA and ESA plan a manned mission to Mars in the 2030s. The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is an electro-magnetic thruster for spacecraft propulsion and is more than five times faster than traditional propulsion technology (expected to be tested in 2015). New Horizons is currently underway and will study the dwarf planet Pluto and its moons in 2015.
By type
Biotechnology
This section requires expansion. (June 2008) |
Main article: History of biotechnology
To be incorporated into main article:Civil engineering
This section requires expansion. (June 2008) |
Main articles: History of civil engineering and History of construction
To be incorporated:- Civil engineering
- Architecture and building construction
- Bridges, harbors, tunnels, dams
- Surveying, instruments and maps, cartography, urban engineering, water supply and sewerage
Communication
This section requires expansion. (June 2008) |
Main article: History of communication
To be incorporated:Computing
Main article: History of computing
- History of computing hardware before 1960
- History of computing hardware (1960s–present)
- History of computer hardware in Soviet Bloc countries
- History of computer science
- History of operating systems
- History of software engineering
- History of programming languages
- History of artificial intelligence
- History of the graphical user interface
- History of the Internet
- History of the World Wide Web
- History of computer and video games
Consumer technology
This section requires expansion. (June 2008) |
Electrical engineering
This section requires expansion. (June 2008) |
Main article: History of electrical engineering
To be incorporated:Energy
This section requires expansion. (June 2008) |
Main article: History of energy
To be incorporated:Materials science
This section requires expansion. (June 2008) |
Main article: History of materials science
To be incorporated:- Timeline of materials technology
- Metallurgy
- Materials and processing
Measurement
This section requires expansion. (June 2008) |
Main article: History of measurement
To be incorporated:Medicine
Main article: History of medicine
This section requires expansion. (June 2008) |
Military
This section requires expansion. (June 2008) |
Main article: History of warfare
To be incorporated into main article:-
- Military history#Technological evolution
- Category:Military history – articles on history of specific technologies
Nuclear
Main article: Nuclear technology § History
Science and technology
This section requires expansion. (June 2008) |
Main article: History of science and technology
Transport
This section requires expansion. (June 2008) |
Main article: Historic transport
To be incorporated into main article:
No comments:
Post a Comment